

LEOK-3-9 Build a Microscope and Determine Magnification Power

- Complete set
- Cost effective solution
- Detailed instructional manual
- Easy alignment

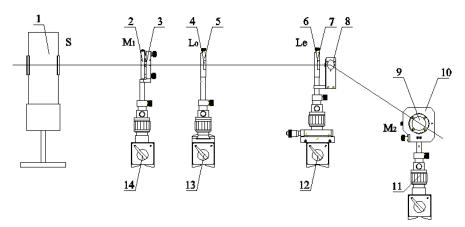


Figure 9-1 Schematic of experiment setup

- Sodium Lamp S (LLE-2)
 Reticle M₁ (1/10 mm)
 Kinematic Holder (SZ-07)
 Objective Lens Lo (f=45 mm)
 6: Lens Holder (SZ-08)
 Eyepiece Lens Le (f=29 mm)
 45° Glass Holder (SZ-45)
- 9: Millimetre Ruler M₂ (I = 30 mm)
 10: Bi-prism Holder (SZ-41)
 11, 14: Z-adjustable Stage (SZ-03)
 12: Three-Axis Stage (SZ-01)
 13: Two-Axis Stage (SZ-02)
 Other: White light source (LLC-3) for illuminating the millimetre ruler

Theory As shown in Figure 9-2, the optical system of a microscope employs an objective with a short focal length and a magnifying eyepiece. The magnification is achieved in two stages as shown in Figure 9-2. The microscope objective forms an enlarged image of the object in a position that is

suitable for viewing through the eyepiece; the magnification through the objective is given by

$$\mathbf{y}_2/\mathbf{y}_1 = \Delta / f_o'$$

Generally speaking, the focal length of the eyepiece f_e' is much less than the distance of the image from the eyepiece *D*, (for normal sight, *D* is approximate 250 mm), so

$$\gamma_3/\gamma_2 \approx D/f_e'$$

Then we get the total magnification:

$$M = \frac{y_3}{y_1} = \frac{y_3}{y_2} \frac{y_2}{y_1} = \frac{D\Delta}{f_o f_e}$$

Where Δ is the distance between the focus of objective and the focus of eyepiece, f_0' is the focal length of objective and f_e' is that of eyepiece.

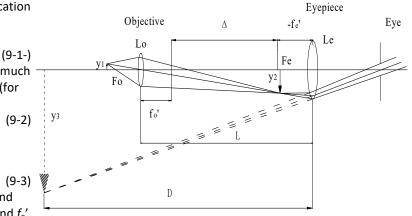
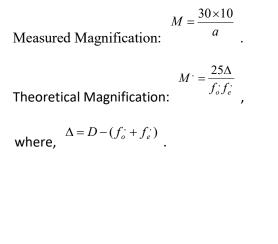



Figure 9-2 Schematic of microscope imaging

A lambda scientific

Experiment Procedures

- 1. Refer to Figures 9-1, align all components in same height;
- 2. Fix the spacing between Lo and Le at 240 mm;
- 3. Move reticle plate M_1 back and forth, till a clear M_1 virtual image is observed behind *Le*;
- 4. Mount the 45° Glass Holder onto the post of the lens holder of the eyepiece lens *Le*, set the glass surface at 45° angle with respect to the optical axis; the glass is acting as a beam splitter (BS);
- 5. Put the millimetre ruler M_2 beside the Glass Holder (perpendicular to the main optical axis of the microscope system) and approximate 250 mm distance from the 45° glass; place the white light source (LLC-3) behind of the millimetre ruler to illuminate the ruler with proper intensity;
- 6. View behind the Glass by one eye, finely rotate the Glass holder to overlap the microscope virtual image from M_1 and the M_2 image from the glass reflection; note: if the brightness difference between the two images is too much, try to adjust the intensity of LLC-3;
- 7. Finely adjust M_1 to eliminate viewing difference between the two images;
- 8. Count the scale amount a in M_1 image included in the range of 30 mm of image $M_{2;}$
- 9. Calculate the measured magnification of the assembled microscope and its theoretical magnification:

Lambda Scientific Systems, Inc. 16300 SW 137th Ave, Unit 132 Miami, FL 33177, USA Phone: 305.252.3838 Fax: 305.517.3739 E-mail: sales@lambdasys.com Web: www.lambdasys.com

Note: above product information is subject to change without notice.